Multiple sites of action of volatile anesthetics in Caenorhabditis elegans.

نویسندگان

  • P G Morgan
  • M Sedensky
  • P M Meneely
چکیده

The mechanism and site(s) of action of volatile anesthetics are unknown. In all organisms studied, volatile anesthetics adhere to the Meyer-Overton relationship--that is, a ln-ln plot of the oil-gas partition coefficients versus the potencies yields a straight line with a slope of -1. This relationship has led to two conclusions about the site of action of volatile anesthetics. (i) It has properties similar to the lipid used to determine the oil-gas partition coefficients. (ii) All volatile anesthetics cause anesthesia by affecting a single site. In Caenorhabditis elegans, we have identified two mutants with altered sensitivities to only some volatile anesthetics. These two mutants, unc-79 and unc-80, confer large increases in sensitivity to very lipid soluble agents but have little or no increases to other agents. In addition, a class of extragenic suppressor mutations exists that suppresses some altered sensitivities but specifically does not suppress the altered sensitivity to diethyl ether. There is much debate concerning the molecular nature of the site(s) of anesthetic action. One point of discussion is whether the site(s) consists of a purely lipid binding site or if protein is involved. The simplest explanation of our observations is that volatile anesthetics cause immobility in C. elegans by specifically interacting with multiple sites. This model is in turn more consistent with involvement of protein at the site(s) of action.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Unc-1: a stomatin homologue controls sensitivity to volatile anesthetics in Caenorhabditis elegans.

To identify sites of action of volatile anesthetics, we are studying genes in a functional pathway that controls sensitivity to volatile anesthetics in the nematode Caenorhabditis elegans. The unc-1 gene occupies a central position in this pathway. Different alleles of unc-1 have unique effects on sensitivity to the different volatile anesthetics. UNC-1 shows extensive homology to human stomati...

متن کامل

A stomatin and a degenerin interact to control anesthetic sensitivity in Caenorhabditis elegans.

The mechanism of action of volatile anesthetics is unknown. In Caenorhabditis elegans, mutations in the gene unc-1 alter anesthetic sensitivity. The protein UNC-1 is a close homologue of the mammalian protein stomatin. Mammalian stomatin is thought to interact with an as-yet-unknown ion channel to control sodium flux. Using both reporter constructs and translational fusion constructs for UNC-1 ...

متن کامل

A Caenorhabditis elegans pheromone antagonizes volatile anesthetic action through a go-coupled pathway.

Volatile anesthetics (VAs) disrupt nervous system function by an ill-defined mechanism with no known specific antagonists. During the course of characterizing the response of the nematode C. elegans to VAs, we discovered that a C. elegans pheromone antagonizes the VA halothane. Acute exposure to pheromone rendered wild-type C. elegans resistant to clinical concentrations of halothane, increasin...

متن کامل

Resistance to volatile anesthetics by mutations enhancing excitatory neurotransmitter release in Caenorhabditis elegans.

The molecular mechanisms whereby volatile general anesthetics (VAs) disrupt behavior remain undefined. In Caenorhabditis elegans mutations in the gene unc-64, which encodes the presynaptic protein syntaxin 1A, produce large allele-specific differences in VA sensitivity. UNC-64 syntaxin normally functions to mediate fusion of neurotransmitter vesicles with the presynaptic membrane. The precise r...

متن کامل

Tail clamp responses in stomatin knockout mice compared with mobility assays in Caenorhabditis elegans during exposure to diethyl ether, halothane, and isoflurane.

BACKGROUND The gene unc-1 plays a central role in determining volatile anesthetic sensitivity in Caenorhabditis elegans. Because different unc-1 alleles cause strikingly different phenotypes in different volatile anesthetics, the UNC-1 protein is a candidate to directly interact with volatile anesthetics. UNC-1 is a close homologue of the mammalian protein stomatin, for which a mouse knockout w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 87 8  شماره 

صفحات  -

تاریخ انتشار 1990